
UCRL-CONF-235292

Java Tool Framework for Automation of
Hardware Commissioning and
Maintenance Procedures

J. C. Ho, J. M. Fisher, J. B. Gordon, L. J. Lagin, S.
L. West

October 4, 2007

International Conference on Accelerator and Large
Experimental Physics Control Systems
Knoxville, TN, United States
October 14, 2007 through October 20, 2007

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States
government. Neither the United States government nor Lawrence Livermore National Security, LLC,
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States government or Lawrence Livermore National Security, LLC. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United States government or
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product
endorsement purposes.

JAVA TOOL FRAMEWORK FOR AUTOMATION OF HARDWARE
COMMISSIONING AND MAINTENANCE PROCEDURES*

J. Ho#, J. Fisher, J. Gordon, L. Lagin, S. West
LLNL, Livermore, CA 94551, U.S.A

Abstract
The National Ignition Facility (NIF) is a 192-beam laser

system designed to study high energy density physics.
Each beam line contains a variety of line replaceable units
(LRUs) that contain optics, stepping motors, sensors and
other devices to control and diagnose the laser. During
commissioning and subsequent maintenance of the laser,
LRUs undergo a qualification process using the Integrated
Computer Control System (ICCS) to verify and calibrate
the equipment. The commissioning processes are both
repetitive and tedious when we use remote manual
computer controls, making them ideal candidates for
software automation. Maintenance and Commissioning
Tool (MCT) software was developed to improve the
efficiency of the qualification process. The tools are
implemented in Java, leveraging ICCS services and
CORBA to communicate with the control devices. The
framework provides easy-to-use mechanisms for handling
configuration data, task execution, task progress
reporting, and generation of commissioning test reports.
The tool framework design and application examples will
be discussed.

INTRODUCTION
NIF is the largest and most energetic laser system in the

world designed to study high energy density physics [1].
The stadium-sized complex contains 192 laser beams. The
beam lines contains a total 6,200 LRUs, which house a
combination of optics, motors, sensors, video cameras and
other devices needed to align, control and diagnose the
laser. Each LRU must undergo qualification procedures to
verify and calibrate the hardware necessary to
commission and maintain the unit.

MCT software automates the qualification process,
which improves efficiency of commissioning and
subsequent maintenance by directing the control system to
carry out complex algorithms with minimal operator
intervention. The tool architecture also supports
simultaneous LRU qualifications, further improving
efficiency. The automated tools are built on top of the
ICCS framework [2], which encourages object oriented
design, code re-use, and standardization. This establishes
a structured environment where the developer may focus
on commissioning algorithms rather than the low-level
details necessary to integrate the tool into the ICCS
software.

A typical qualification procedure entails moving a set of
electro-mechanical devices, measuring the beam location
on the video sensor, calculating the system
characterization, and verifying the results. The process is
repeated several times. This labor-intensive process is
then applied to another set of devices in the same beam.
For example, most electro-mechanical devices exhibit a
degree of backlash due to tolerances and normal wear that
must be measured to compensate for the effect in the
control system. The process to calculate the backlash for a
single motorized stage entails moving the motor in both
directions, finding the beam centers, calculating the
compensation, and then repeating the process a number of
times to improve accuracy and assure reliability.

An automated tool eliminates most of the operator’s
interactions with the control system by encapsulating all
the necessary actions within the tool’s algorithm. A single
operator command directs the tool to perform a complex
sequence of moves, measurements, and calculations. A
MCT performs commands faster because there is no
noticeable delay between sequence steps. Furthermore, an
operator can run several instances of the tool to qualify
multiple beams simultaneously.

MCT FRAMEWORK DESIGN
The MCT software is implemented in the Java language

(version 6.0) and packaged into a standard ICCS software
release. The MCT framework is built on top of the ICCS
User Interface (UI) framework, which provides NIF-
specific logic, connection and display patterns, and
services [3]. Several unique UI features distinguish the
MCT. Standard ICCS UIs, by design, require operator
actions to initiate commands and are generally stateless.
MCTs incorporate command capability that can perform
several actions or complex algorithms without operator
involvement. The MCT framework provides a toolset for
flexible configuration data management, thread
management for algorithm execution, and status reporting
for the MCT UI. The framework facilitates code re-use,
object-oriented design, and consistency among all tool
instances.

Configuration Data
Provision for adjustable configuration data limits the

need to recompile software each time a particular device
configuration is added, modified, or deleted. By managing
the data outside the code, the tool can be updated within
minutes to support a new hardware device. Any data that
could potentially change, for instance device location or
device specific properties, is stored in a single Extensible
Markup Language (XML) formatted file.

*This work performed under the auspices of the U.S. Department of
Energy by Lawrence Livermore National Laboratory under Contract
DE-AC52-07NA27344.
#joyceho@llnl.gov

The MCT framework parses the list of tools defined in
an XML file. The list of tools is separated by subsystems
that mirror the NIF laser subsystems. XML elements
specify any configuration data shared among the devices
within the same subsystem. In addition, a set of
companion files such as spreadsheets can be associated
with a particular tool. The format of the files is tool
specific; the only requirement is that the tool contains
logic to parse the file. The benefit of this design is
flexibility to tailor configuration files to the individual
needs of each tool.

Algorithm Execution
Automating a set of qualification procedures may

require implementing several algorithms in an individual
tool. Each algorithm is partitioned into one or more tasks,
which encourages object-oriented design and code re-use.
The MCT framework contains mechanisms for task
execution, status propagation, and reporting the results.
Figure 1 shows a diagram of the interaction between a
tool’s UI and the framework components.

Execution management of tasks that initiate tool
algorithms is a key framework feature. The execution
manager leverages the new Concurrency API in Java 6.0
for handling all necessary tasking, supporting parallel task
consumption, stopping of running tasks, and providing
thread debugging tools for troubleshooting purposes.
These features eliminate the overhead of implementing a
separate thread management system within each tool.

The MCT framework publishes algorithm progress
information to any subscribed listener, such as the tool UI
or other peer tasks, through a publish/subscribe observer
pattern. For example, the information could be a
completion percentage, an error message, a task action
message, or an intermediate data result. By establishing a
standard communication protocol to pass information
between tasks, the framework promotes a division of
labor among the tasks.

Documentation of measurements and calculations is an
important requirement for many tools. The framework

supplies mechanisms for saving images and data using a
standard naming convention. In addition, an Excel-writer
task can run in parallel with the algorithms to record data
values, formulas, and other information necessary to
perform the calculations manually. The spreadsheet
format is an intuitive representation of the data that is
familiar to operators and allows for further offline
analysis.

Common Device Communication
ICCS software adheres to the Common Object Request

Broker Architecture (CORBA) standard to communicate
with distributed elements such as hardware devices.
Within the ICCS framework is a layer to create
connections to any device in NIF. A substantial percentage
of MCT communication involves connections to motors,
cameras, photodiodes, or automatic alignment supervisors
[4]. The MCT framework adds another layer on the ICCS
connection framework to encapsulate common function
calls for these four connections. Benefits include
standardized status reporting and error handling across the
tools, enhanced code maintainability and minimized code
repetition.

APPLICATION EXAMPLES
There are currently twenty-five tools implemented in

the MCT software that are divided into five categories
based on the general purpose:

• Alignment verification of laser beam position
• Timing optimal subsystem delays
• Device calibration
• Diagnostics to troubleshoot the laser
• Image analysis for beam characterization

Two tools will be highlighted, one from the device
calibration category and another from the image analysis
category. Algorithm automation as well as how the
framework is leveraged will be discussed.

Figure 1: Diagram of the interaction between tool UI and the framework

Cross-Coupled Motor Tool
An example device calibration tool is the cross-coupled

(CC) motor tool. This tool computes a transformation
matrix for positioning beam steering gimbals, which are
multi-motor devices. The set of motors are coordinated
such that the laser beam is either 1) centered within the
clear optical aperture or 2) pointed to the next optic. The
goal is to perform each operation without affecting the
other as viewed on the alignment sensor. The algorithm
moves individual motors separately and measures the
response on the video sensor. Once all input axes are
measured the CC matrix is computed.

Manual controls are inefficient and error prone because
the operator must repeat a tedious process many times:
specify distance, move motor, acquire sensor image, and
locate beam position. The manually-operated procedure
requires at least an hour per gimbal to complete the
measurements, but the automated tool reduces this time to
only 15 minutes.

The tool encapsulates configuration data in a
spreadsheet to enumerate different gimbals. The data
includes the default distances, tolerances for matrix
verification, and the number of gimbal axes. The tool
implements five tasks: query the device for the currently
stored matrix, acquire the individual motors, measure
response position, store new matrix in the device, and
verify the new matrix is within tolerance limits. These
tasks use framework connections to motors and an
automatic alignment supervisor to communicate with the
control devices. Progress status and measured values are
published to the operator display.

Pinhole Overlap Tool
The pinhole overlap tool (Figure 2) relies on specialized

image analysis to quantify the optical system installation.
The purpose of the tool is to minimize beam clipping that

Figure 2: Pinhole overlap tool display

may occur when the beam travels through pinholes that
may not be perfectly aligned. The image algorithm
measures beam ellipticity to characterize clipping and
determine the pinhole location, while providing visual
feedback to the operator for continuous adjustments. The
decision to automate this procedure was primarily driven
by lack of a consistent vision-based metric to quantify the
clipping, as the human eye has difficulty detecting small
misalignments. The manual adjustment period was about
45 minutes per beam, but the automated tool decreased
the time to 10 minutes.

The MCT framework limited new code development
effort to the implementation of the specific image
analysis, which condensed the development effort from 6
weeks to 3 weeks. To account for a potential camera
location change, a configuration spreadsheet specifies the
camera hardware. The common camera connection
acquires the image for processing and publishes the image
along with the ellipticity and location of the pinholes to
the display through features in the tool architecture.

CONCLUSION
The MCT framework provides simple mechanisms for

managing configuration data, algorithm execution, and
common device communication. Tools built from the
framework plug into the distributed control system
without impacting normal operations. The framework
promotes object-oriented design, code re-use, and
standardization across all commissioning tools with a
minimum of developer effort. These features support the
automation of complex multi-step procedures with low
operator intervention, allowing NIF to be commissioned
and maintained at higher efficiency.

REFERENCES
[1] P. Van Arsdall, et al., “Status of the National Ignition

Facility and Control System,” ICALEPCS 2005,
Geneva, Switzerland, October 2005.

[2] R. Carey, et al., “Status of the Use of Large-scale
CORBA-distributed Software Framework for NIF
Controls,” ICALEPCS 2005, Geneva, Switzerland,
October 2005.

[3] J. Fisher, et al., “User Interface Framework for the
National Ignition Facility (NIF),” ICALEPCS 2007,
Knoxville, October 2007.

[4] K. Wilhelmsen, “Automatic Alignment System for
the National Ignition Facility,” ICALEPCS 2007,
Knoxville, October 2007.

[5] A.P. Ludwigsen, “Software Engineering Process
Used to Develop the National Ignition Facility
Integrated Computer Control System,” ICALEPCS
2007, Knoxville, October 2007.

